x^2=882/10

Simple and best practice solution for x^2=882/10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=882/10 equation:



x^2=882/10
We move all terms to the left:
x^2-(882/10)=0
We add all the numbers together, and all the variables
x^2-(+882/10)=0
We get rid of parentheses
x^2-882/10=0
We multiply all the terms by the denominator
x^2*10-882=0
Wy multiply elements
10x^2-882=0
a = 10; b = 0; c = -882;
Δ = b2-4ac
Δ = 02-4·10·(-882)
Δ = 35280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{35280}=\sqrt{7056*5}=\sqrt{7056}*\sqrt{5}=84\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84\sqrt{5}}{2*10}=\frac{0-84\sqrt{5}}{20} =-\frac{84\sqrt{5}}{20} =-\frac{21\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84\sqrt{5}}{2*10}=\frac{0+84\sqrt{5}}{20} =\frac{84\sqrt{5}}{20} =\frac{21\sqrt{5}}{5} $

See similar equations:

| -8x-19=-6 | | 6x-4+3x+2=4x+3+x | | 6x=211224x | | 18x-9=-12 | | x+4=7-19 | | b+5=-21 | | 4k^2+2k=-1 | | (2x-1)(x-2)(x+3)=0 | | 5^4x-5=1/25 | | 80(t+3)=120t | | 3x2−11=16 | | (30-x)/5+4=8 | | 2n²+7n+9=0 | | 4x+7+6x+3+90=180 | | −9d=45 | | 2x+3=x+10+7 | | (5x+3)(6x+4)=0 | | 9.6(x-1.75)=-19.2 | | 4.75x=54+2.5 | | x+1=2x+8+7 | | 3.3+10m=6.67 | | 14(2x+7)+3=14(2x) | | (7-2x)(7+2x)=6 | | 2.2y=33 | | 5(2x+9)=-17+42 | | 3(3x-2)=3+5x+15 | | 7+16y=11;Y=1/4 | | −12w=60 | | x^2=882/6 | | 9a-(-72)=0;a=-8 | | 8-18x-6-3x=5 | | x=120x1.1 |

Equations solver categories